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INFORMATION THEORETIC ANALYSIS FOR A GENERAL QUEUEING SYSTEM AT

EQUILIBRIUM WITH APPLICATION TO QUEUES IN TANDEM*

ABSTRACT

In this paper, information theoretic inference metholology for system
modeling is applied to estimate the probability distribution for the number of
customers in a general, single server queueing system with infinite capacity
utilized by an infinite customer population. Limited to knowledge of only the
mean number of customers and system equilibrium, entropy maximization is used to
obtain an approximation for the number of customers in the G|G|l queue. This
maximum entropy approximation is exact for the case of G = M, i.e., the Mlnll
queue. Subject to both independent and dependent information, an estimate for
the joint customer distribution for queueing systems in tandem is presented.
Based on the simulation of two queues in tandem, numerical comparisons of the
joint maximum entropy distribution is given. These results serve to establish
the validity of the inference technique and as an introduction to information

theoretic approximation to queueing networks.

*This work was supported under & Naval Research Laboratory Fellowship under
Grant NO0OO14-83G-0203 and under an ONR Grant NO0OO14-84K-0614.



I. INTRODUCTION

Classical queueing theory [1,2,3] has proven to be quite successful in
modeling both communication networks [4,5] and computer systems [7]. In most
cases, rather unrealistic assumptions about either the underlying arrival
process (e.g., Poisson) or service distribution (e.g., negative exponential)
must be employed to obtain results as it is under these assumptions that
queueing theory most easily yields solutions. Because the processes of “"real
world™ systems generally do not obey this exponential structure, the success of
the models has remained in doubt,

Shore [8]) has proposed an explanation based on information theoretical
system modeling and the princiiple of maximum entropy or, more generally, the
principle of relative-entropy [9]. In Shore's approach, an abstract system
model consisting of various "states” is introduced. The probability of the
occurrence of a certain state is estimated by the maximum entropy distribution
subject to known information in the form of expected values of functions of the
states. A relationship between the abstract system and the actual system is
thereby established and estimates of desirable probability distributions of the
model are obtained. Shore utilizes this technique to derive both the equili-
brium and time-dependent probability distribution for the number of customers
(number of jobs, number of calls, etc.) in M|M|»| |N and M|M|» queueing systems,

In this paper, information theoretic system modeling is applied to
estimate the probability distribution for the number of customers in a general,
GlG]l, queueing system. The extension to queueing networks is considéted
through the approximation of N systems in tandem.

Bened [10], it appears, first proposed use of maximum entropy and statisti-
cal mechanical analysis of large-scale communication systems, For a telephone

system in which only the expected number of calls in progress is known, Benes



shows that the maximum entropy distribution is precisely that which is obtained
as the equilibrium distribution of an ergodic, reversible birth-death Markov
process with constant birth and death rates. A direct implication of this
result is that constrained only by the expected number of customers in the
system, the maximum entropy approximation to a single service queueing system is
the celebrated M|M|l queue. The maximum entropy distribution is, of course,
obtained independently of the underlying stochastic processes and under
moderately few technical assumptions [9].

Ferdinand [11) uses the principles of statistical mechanics to derive the
soution to the M|M|1|N (finite capacity) queue. In later work, Shore [12]
establishes maximum entropy (termed information theoretic) approximations for a
number of "performance distributions” of M|G|l and G|G|l queues at equilibrium.
These performance distributions, such as the number of customers in the system,
a customer's waiting time, or the number served in a busy period, are estimated
subject to moments of the interarrival and service time distributions. It is
demonstrated that, using relatively few moments, that maximum entropy provides
good approximations to a variety of M|G|l systems. Further, for many of the
distributions, the approximations yield exact results when G = M, Using an
approach similar to that of Shore, El-Affendi and Kouvatsos [13] independently
establish a maximum entropy approximation to the number of customers in a M|G|l
system as well as the service distribution corresponding to the estimate,
Further, an approximation to a specific G|M|l queue is determined.

In Section II of this paper, the general relative entropy formalism and
technique for solution are presented, and the specialized case of entropy maxim-
ization is discussed. These techniques are applied in Section III to derive the
maximum entropy approximations to the G|G|1 queueing system. In Section 1V,

utilizing the G|G|l approximation, the maximum entropy approximation to the



joint distribution of the number of customers in N queues in tandem is estab-
lished, A discussion of maximum entropy "product form" solutions subject to
information on the marginal and joint distribution is included. In Section V,
numerical comparisons of the maximum entropy approximation for known or simu-
lated distributions for two queues in tandem are given., The paper is concluded

by a general discussion in Section VI,

IT. PROBLEM STATEMENT AND RELATIVE-ENTROPY MINIMIZATION

Consider a system that has a countable set S of possible states with

p(Si)> 0, s;e5, 1i=1,2,.... (1)

Ip(s) =1 : (2)
i

where P(Si) is the probability of the occurrence of the state S Assume that

i.
there exists a "true” distribution, q+sD which is unknown., It is desirable to
estimate this distribution q+ based on incomplete information. Let p be the

current estimate or initial value distribution of q+.

Suppose new information about q+ becomes available in the form of expected
values of known functions, fz; £ =1,2,...,M, of the states as follows:
+ =
E qT(8 ) (5)) = <£ > . (3)
+
The constraints (1)-(3) do not precisely identify q . Indeed, besides the true
"distribution, q+, there exists a subset of distributions D' of D which also
satisfies all constraints., One way of uniquely choosing an estimateffor q+,
well-accepted in the literature [14,15,9], is the method of minimizing the rela-
tive entropy (also known as cross-entropy, Kullback-Leiber number, directed

divergence, or discrimination information), namely, choose qeD so that H[q,p]

defined by



(q(si)

;T§I79 (4)

Hlq,p] = g q(S,)1og

is minimized. The choice of q as above is called the final value distribution,
For estimating probability distributions, relative-entropy minimization has been
shown to be self-consistent and uniquely correct [9], and, therefore, the
estimates are sometimes called information theoretic approximations. It turns
out [15,16,17] that if there exists a solution to (4) such that the constraints
(1)-(3) are satisfied, then that solution has the form
M

q(s,)= p(S dexp(-B_ -,zlslfl(si)) (5)

at all states, except possibly on a set for which q is identically zero [16].

In (5), B8,, £ = 0,1,...,M are Lagrangian multipliers. Further if Bz can be

z’
determined such that the constraints (1)=~(3) are satisfied, then a solution to
(4) exists* and is given by (5). From (2) and (5), the following partition

function exp(Bo) given by

M
exp(Bo) = z eXP(-lZIBsz(Si)) (6)
or
M
B, = log g exp(-zlezfz(Si)) ¢))

.can be defined, noting that Bo is a function of the other multipliers. If the
sun in (7) converges and, in particular, assumes a closed form solution, then

the multipliers may be determined via the following relations:

380
-—35:'0:'2). (8)

*The issue of existence of a solution has been studied by Csiszar [16].
: 4
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In the event that no closed form is obtainable or the system (8) is inconsis-
tent, the multipliers must be approximated by numerical techniques [18]. For
systems that have an uncountable number of system states, the sums are replaced

by integrals in the usual way.,

Entropy Maximization

When little is known a priori about the distribution to be estimated, a
natural choice for the initial value distribution is one in which all states are
given equal weight, i.e., the uniform on S, In this case, the solution q in (4)

is said to maximize the entropy H given by

H[q] = - ] a(s,)log(a(s))) « (9)
i

When a solution exists, q is denoted the maximum entropy approximation to q+

and is given by
M
a(s;) = exp(-8 - 1 B,£,(5)) . (10)
£=1
Note that (10) is identical to (5) with the initial value distribution deleted.
A large value of the entropy functional (9) corresponds to a high degree of
uncertainty. The maximum entropy distribution can thus be interpreted as the
probability distribution that reflects maximum uncertainty while utilizing all
available information. In this sense, it is the "least biased™ or “most conser-
vative" distribution one can propose which satisfies all constraints,
In the following section, the methodology of relative-entropy minimization

is applied to obtain approximations to the number of customers in a GlGll system

at equilibrium,



I1I. MAXIMUM ENTROPY APPROXIMATION TO GENERAL QUEUEING SYSTEMS.

Consider & queueing system consisting of an infinite customer population
from which individual customers arrive singly with interarrival times ‘
identically distributed according to a general distribution A(t). The customers
(possibly) wait in an infinite capacity buffer, then are served individually by
a server according to a general service time distribution B(t), and finally
return to the arriving portion of the customer population., The queueing system
is assumed to be at equilibrium with the steady state distribution to the number
of customers in the system denoted by q+.

Available information in a queueing system is often in the form of moments

of the interarrival distribution

a_ = [thaa(t) m=1,2,...
and the service time distribution

s = [t"dB(t) m=1,2,000 &

The ratio of the first moments, p = sl/al, is denoted the utilization factor,

and it determines the traffic intensity or "loading” on the system [2].
Based on the expected number of customers in the system, <K>, the maximum

entropy approximation to q+(K) can be obtained subject to

7 qR=k) =1 (11)
k=0
and d
7 kq(R = k) = <K> . ' (12)
k=0

From (6)-(8) and (10), it follows that (see [12] for details)



1 ( <K> )k
1 +<KK0 '+ <7 °

q(K = k) = (13)
The distribution, q(K), has nothing specifically to do with a queueing s&stem
but is the maximum entropy distribution obtained from a single moment constraint
and normalization and (13) is applicable to any system whether or not the system
is at equilibrium when only the mean of the distribution to be estimated is
available. What is of interest here is that (13) is the formula to the steady
state distribution of the M|M|l queueing system [2]. This can be seen by noting

that for the M|M|l queue, q+(K), is given by

=K = -k (14)
and
p
XK> = T—:—;- (15)

so, putting (15) into (14), (13) follows. The implication of the result is that
the maximum entropy approximation to a G|G|l system subject to only the mean
number of customers is the M|M|l queue, It turns out that this approximation is
sometimes a satisfactory estimate for the M|G|l system [12], especially when the
service distribution is close to exponential, e.g., the MlH2|l system, but as a
general G|G|l approximation, there is no reason to assume (13) will be “close."

To specify the queueing system, we impose additional constraints, Namely,
as is well-known [1,2], all single server systems at steady state satisfy the

equilibrium condition

1-q(0) __1 (16)

5, a,
which has the interpretation that the average rate of arrivals to the system is

equal to the average rate of departures. Now, subject to (11)=-(12) and

rewriting (16) as



q(0) = 1 -p (17)

where p = sllal,the following gueueing system approximation can be considered,

The constraint (17) can be posed as

1 I(k)g(R=k) =1-p
k=0

where

1 ifk =0
I(k) = R (18)
0 ifk >0

The maximum entropy solution has the form

q(K = k) = exp(-Bo - Bk - BZI(k)) . (19)
For notational convenience, pose

x: = exp(-ﬁo) y: = exp(=8,) z: = exp(~8,)
and observe from (19) that

’ X2 k=0

. (20)
xyk k>0

q(K = k) -

From (11), (12), (17), and straightforward manipulations, we obtain:

X -9
yETES
2 = X1 = 0) | (1 - p) (KK> - p) .
e(l -y 2 °

(1 ~y)

x’ -—ip .
z(l-y)+y <K -»p




Y

Substituting the values for x,y,z in (20), the approximation to the G|G|1

queueing system 18 given by
l1-»p k=0

q(K = k) = 2 > - p.k k>0 (21)

o)

For the particular case of p = <K>/(1 + <K>), (21) reduces to q(K = k) =
(1 - p)(p)k the exact M|M|l formula as expected. It is noteworthy that in [12]
(17) is applied not as a constraint but as a condition on the solution, (13).
This results in a G|G|l approximation given by (14) which is clearly less
general than (21).

In the following section, utilizing the approach which led to the G|G|1
approximation, maximum entropy approximations to the joint distribution.of the
nunmber of customers in more than one queueing system is examined and the approx-

imation to queues in tandem is presented.

IV. MAXIMUM ENTROPY APPROXIMATION TQ QUEUEING SYSTEMS IN TANDEM

Under certain conditions, the relative-entropy joint distribution, or,
specifically, the maximum entropy distribution, is equal to the product of
relative-entropy distributions., The concept of product form distribution is

stated precisely below.

+
Definition: A joint probability distribution q (KI’KZ""’KN) is of the

K

product form if

. N
-+
q (KI,KZ’...’KN) = inl q (Ki) »

i.e., the joint distributrion is equal to the product of the marginal distribu-

tions q+(Ki), 1 <i <N,



The above definition 18, of course, equivalent to the random variables
KI’KZ""’KN being statistically independent. Much of this section will be

devoted to the discussion of when the approxiation-is of the product form.

Maximum Entropy Approximation to N General Queueing Systems.

Subject to constraints only on the mean number of customers in each system
and equilibrium, it is now shown that the maximum entropy approximation to the
joint distribution of the number of customers in N queueing systems is a
"product form"™ solution. The equilibrium condition for each system is as
before; the average arrival rate is equal to the average departure rate. For
notational simplicity, let

<Ki>: = the expected number of customers in system i

and s(i)
T = 1 =
Pyt ':TTT the utilization factor for system 1
1
where sii) and aii) are the first interarrival and service moments of system i,

Under the above assumptions on the constraints of the joint distribution, the

following result can be shown,

Proposition 1: The maximum entropy approximation to the distribution of the

number of customers in N G|G|l queueing systems at equilibrium is of the product

form, i.e.,

N
q(Kl.Kz, O..’KN) = H Q(Ki) (22)
i=] .
where
1 - Py ki =0
2 ki >0
q(Ki - ki) = ; Py \(<K1> IR (23)
- 7 7
<Ki> Py <K1>

10



Proof:
Because there are constraints only on the marginal distributions, the joint

maximum entropy distribution has the form

2N
Q(KI.KZ.-N.KN) = exp(-Bo - Z Bifi(KI,KZ, ...’KN))
i=]

where, by assumption, fi(Kl,Kz,...,KN) i3 a function of only Ki' Specifically,

2N N
exp(-8, - 121 Byf (R 1sKyyeee,K)) = exp(—8 ) I exp(-8,K, = A I(K,)

i=1

by simply relabeling the multipliers 821 = ) I(Ki) is defined by (18). Under

i.
the assumption that the marginal distributions satisfy the normalization
constraint, the product form follows. By (22), it is clear that the maximum
entropy approximation to each marginal distribution is exactly the GIGII approx-

imation given by (21) and (23) is obtained. Q.E.D,

It should be emphasized that Proposition 1 is not a result on queueing net-
works. A queueing network is an inter—connected group of queueing systems where
customers can enter an individual “node"” (queueing system), extract service, and
then either depart the network completely or go to another node and extract more
service. In order to discuss approximating distributions to such systems, many
new parameters must be considered, such as the network topology or the possible
transitions between systems., To utilize information theoretic analysis, it is
necessary to capture the system interaction through appropriate equifibrium
constraints. In the certain instances where one has knowledge of rate.balance
equations for each individual node of a network as well as system equilibrium
rate balance equations, one possible approach follows from relative-entropy

minimization subject to fully decomposable subset and aggregate constraints [19].

11



This technique is not considered here; instead, it turns out that the approach
utilized for the single queueing system is applicable to an elementary queueing

network, namely, queueing systems in tandem.

Maximum Entropy Approximation to Tandem Queues at Equilibrium.

A simple queueing network topology is N queues in tandem. The tandem
queueing network of consideration consists of N queueing systems in which
customers departing node i immediately enters node i+l. It is assumed that
once a customer enters the first node, he must extract service at each node
before departing the network and reentering the arriving customer population.
The arrival rate for node i+] is therefore the departure rate for node i. It
is further assumed that the system as a whole is at equilibrium, so, by the

topology, it follows that

1 1 -q(K; = 0) 1 26)
aii) ;Ei) £‘§1+1)

i.e., the average arrival rate to all nodes is identical and therefore must be
equal to the arrival rate to the first node; I/ail). Hence, subject to (24),
equilibrium, and the expected number of customers in each node, (22)-(23), is
the maximum entropy approximation to the distribution of the number of customers

in a network of tandem queues where Py has the particular form

L)
1
Py =TI

4

Although the interconnection of the tandem queues can be addres;ed by (24),
the form of the approximafion (22) is.generally incorrect. The only known tan-
dem network with a product form distribution for the number of customers in the
network is one with Poisson arrivals to the first node and where customer ser-

vice times in each node are distributed according to an exponential distribution.

12



Moreover, the service times for a specific customer are independent from node to
node. The product form follows directly from Burke's Theorem [2], and it turns
out that each node is an M|M|l queue [2]. Thus, in order to obtain a maximum
entropy approximation to the tandem network which is not of the product form, it
i8 necessary to repose the inference problem and obtain the approximation sub-
ject to "dependent”™ information. This notion of dependent information is now

made precise,

Maximum Entropy Approximation Subject to Joint Information.

Subject to information only on the marginal distribution, the maximum
entropy approximation to a joint probability distribution is of the product form
[17]. Conversely, if there is any hope of capturing the possible dependence of
random variables, it is necessary to use constraints which give information on

two or more random variables simultaneously, i.e.,

- )) . £(K; 5Ky 00 s KDA(K LKy 5000, K0 = KE(R K 000K o
1’ 2’00'1

Constraints of this form are on the joint distribution and will be termed joint
constraints, A special case of interest occurs when the function of the random

variables, f(Kl,Kz,...,KN) is of the form

i k
f(Kl,KZ,coo,KN) - Kl KZ eee &

where 1, j, and k are integers, then the joint constraint is a joint moment of

the true distribution. s
There is nothing in the maximum entropy formalism which disallows obtaining

the maximum entropy solution subject to constraints only on the joint distribu-
tion. Under the assumption that the problem is well-defined, it turns out that

all marginal distributions are identical. It appears, however, that in general,

13



nothing can be stated about whether the approximation to the joint distribution
is of the product form.

The relative-entropy approximation subject to constraints on both the
marginal and joint distribution can still be of the product form. Under the
assumption that the initial value distribution is of the product form, necessary
and sufficient conditions are presented for the special case of moment

constraints. The proof of the following proposition is given in the Appendix.

Proposition 2: The relative-entropy approximation to q+(K1,K2,...,KN) subject

to both marginal and joint moment constraints is of the product form if and only
if each joint constraint is equal to the product of marginal comnstraints
satisfied by the approximation.

If the random variables Ki are correlated, then joint constraints can be
used to force probabilistic dependence of the approximation. In the present
application where the random varigbles represent quantities of individual
systems, joint constraints thereby provide a means for the modeling and eventual
analysis of system interaction.

As a special application of the preceding result, consider the maximum
entropy approximation to the joint distribution q+(K1,K2) subject to normaliza-

t'ion and the covariance of the random variables Kl and Kz, i.e.,

Cov(KK,): = ) (K, = <K PIEK, = <K >)q(K,,K)

KI’KZ

This is not a valid constraint as the covariance cannot be written as the
expected value of a single function of the random variables. However, i1f the
problem is posed as the determination of the maximum entropy distribution sub-

Ject to <K1>, <K2>. and <K1K2>, the problem is generally well-defined and the

14



solution will automatically satisfy the covariance, Cov(Kle). Noting that

Cov(K1K2> - <K1K2> - <K1><K2>

and under the assumption of zero covariance, the joint constraint is equal to
the product of marginal constraints, Hence, subject to constraints only on the
means and the first joint moment, the maximum entropy approximation is of the

product form if and only if the random variables are uncorrelated.

Maximum Entropy Approximation to Two Queues in Tandem.

Using the preceding ideas, the maximum entropy approximation to the number
of customers in a two-node tandem queueing network subject to both marginal and
joint constraints is now presented. Two separate approximations to q+(K1,K2)

are considered.
The first approximation is obtained subject to normalization, and the

independent information: <K.>, Py and <K, >, P where i sgi)/ail). As

1 2

already noted, the maximum entropy solution is a special case of Proposition 1.

Let ql(KI’KZ) denote this approximation which is given by

where

1-p, Kk =0
i=1,2
q,(K, =k, ) = k, >0
1m0 02 K> - p (25)
e S Y "
&S =5 TS

The second approximation is obtained subject to the same constraints on

ql(Kl’KZ) and the first joint moment, <K1K2>. The form of the approximation

denoted, qz(Kl,Kz), is given by
q,(K|,K,) = exp(=B, - B,K, = B,I(R;) - BK, - B,I(K,) - BoKK,). (26)

15



In this case, no analytic form could be found and, for the forthcoming numerical

results, (26) will be estimated by the APL function of Johnson [18], which com-
putes estimates of relative-entropy approximations given an arbitrary constraint
matrix. These approximations will be compared in the following section for a

variety of two-node queueing networks.

V. NUMERICAL RESULTS

As far as can be determined, there are essentially no known distributions
for the number of customers in a network of tandem queues except for a tandem
network of MIM]I queues. In order to compare the approxiations, a simulation of
two queues in tandem is performed using an APL function which computes the joint
distribution. The simulated distribution will be denoted qs(Kl,Kz).

To verify the accuracy of the simulation, a chi-square goodness of fit test
[20] was performed at the five percent level for the M|M|l + M|l system. After

performing the test, it was determined that the null hypothesis; the distribu-

tion observed is the joint distribution for the number of customers is a
Jacksonian tandem network [2] of MlMIl queues could not be rejected.

Two different networks were simulated, one in which customers require
service according to the same general distribution in each node but have
independent service times ;nd one in which a customer has the identical service
time in both nodes, One reason for considering these networks is that for the
‘simulation distributions, Cov(Kl,Kz) was generally larger than for systems with
independent, identically distributed service times. In both networkgl customers
arrive to the first node according to a Poisson process, and the firsf node 1is
therefore an MIG‘I queue, A comprehensive analysis of the network where
customers have identical service times in both nodes under the assumption of

Poisson arrivals to the first queue is given in Boxma [21], the particular case

16



where the first node is an M|M|l queue is considered in Pinedo and Wolff [22].
As stated, the aproximations (25)-(26) are for tandem networks with
general interarrival and service distributions. The forthcoming examples are
restricted, however, to systems with Poisson arrivals to the first system.
There are two reasons for this: one is the aforementioned interest of such net-
works; the other reason is that these results serve to extend examples presented
by Shore [12] for single M|G|l systems. Moreover, in the first three examples,
the departure process from the first node is not Poisson and so the second
system is truly a G|G|l queue, and thus the numerical results give some insight
on maximum entropy approximations to general queueing systems.
Numerical results are presented in terms of the joint distribution of the
simulated distribution and the two maximum entropy approximations., Several
examples are given based on various service distributions. The statistics

<K1>,<K >, and <K, K, > are computed from qs(KI,KZ), the constraints, 1 - Py and

2 172
1 - p, are derived from q+(K1,K2). The approximations are compared via the

following measures: the relative entropy between qi(Kl’KZ) and qs(Kl,KZ)

1 ’Kz)
-4

qi(K

H[q;,q°] = [ q (K ,K))log 1=1,2

K

the sum of the square of the pointwise difference between qi(Kl’KZ) and

8
q (K1’K2) ?

5 2
. ZK (a, (K),K,) = q (K},Ky)) 1=1,2 .
1°%2

and the maximum absolute pointwise difference between qi(Kl’Kz) and qs(Kl’Kz)

max |q,(K,,K,)) - q® (K, ,K.) | i=1,2
(KI'KZ) 147172 172

17



A "small” value for each measure implies the distributions are “"close.” 1In the

case where qi(K1 = kl,Kz = kz) is close to qs(K1 =k = kz) for each pair

1°%2
kx'kz’ the relative-entropy, H[qi,q+], can be considered the average percentage
of relative difference between the distributions. This interpretation is valid,
for example, when the maximum absolute pointwise difference is a very small
value and the ratio qi(KI’KZ)/qs(KI’KZ) is thereby close to one. It then
follows that

=~ ] q (K ,K,)(
q°(K,,K,) U Pk

z qi(KI’KZ)log -1 .
Example 1: MIHZII + u2|1

In this first example, customers arrive to the first node according to a
Poisson process with rate llail) = ], then proceed to a service area consisting
of two parallel servers. The service distribution is the hyperexponential

distribution. The first node is therefore the M|Hzll system. The service

density, b(t), 1s given by

b(t) = 4 exp(-t) + 3 exp(-2t) (27)

from which it follows that sil) = 5/8, Hence, L= 5/8., By (24), the arrival
rate to the second node is also equal to one, even though the departure
process from the first node is not Poisson. The customers receive service in
the second node with density given by (27), but each customer has a service
time length independent of his service time in the first system., Regardless
of this independence condition, the utilization factor of the second system is
given by p, = 5/8. The simulation was run for 5,016 customers, and from

qs(Kl,Kz), the following statistics were computed: <K.> = 1,77, <K,> = 1,83,

1 2
and <K1K2> = 3,14, From the Pollaczeck-Khinchin mean value formula [2] (cf.
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page 187), <K1> = 1,79 when computed from the true distribution, q+(K1), so the
simulation value is extremely close. Note that Cov(Kl,Kz) = -0,1; thus, the

simulated distribution is only slightly correlated.

Example 2: M|H2]1 + Il

All discussion of example 1 applies to this second example, except now
customers have identical service times in each node. The service density in
node one is again given by (27), so the first system is an M]Hzll queue and the
network will be denoted by M]Bz‘l + I|1 where "I" indicates identical service
times. From example 1, it follows that CR 5/8 = P oe The simulation was run
for 2,536 customers, and the following statistics were computed: <Kl> =1,70 =
<K2> and <K1K2> = 4,1, Hence, Cov(Kl,Kz) = 1,22, and customers having identical

service times in each node significantly increases the correlation of the random

variables K, and K2 as expected,

1

Example 3: M|D|1 + I}l

In the third example, customers again arrive to the first node according to
a Poisson process with rate equal to one. Each customer then demands a fixed
amount of service of length equal to 0.5. The first node is therefore an M|D|1

system with service time density given by
b(t) = §(t = 0.5) (28)

where § i8 the usual Dirac delta function. From (28), it is clear that

8 = 0.5, and by a similar argument as in the preceding examples, the utiliza-

tion for both systems is equal to 0.5, i.e., Py " 0.5 = P oe The simulation was

run for 1,024 customers, and the following statistics were computed: <K1> -

0.765, <K,> = 0,512, and <K,K_,> = 0,75, From the Pollaczeck-Khinchin formula

2 172
<K1> = 0,75, when computed for the true distribution, so, again, the simulation
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statistic is very close. For the simulation distribution, Cov(Kl,Kz) = 0,13,
80, as in example 1, the random variables are essentially uncorrelated. The
small correlation likely results from the light load on the first system; this
is only conjecture, however, and more investigation is necessary to establish

any connection between "loading™ and correlation,

Example 4: M[M|l + I}l
In the fourth example, customers arrive to the first node with rate equal

to 0.8 and demand service according to a negative exponential distribution.,

Hence, the first node is an M]Mll queue, The service density is given by

b(t) = exp(-t)

80 sgl) = ], Each customer has identical service times in each node, and thus

this network differs from a tandem network of M|M|l queues discussed in connec-
tion with Jackson's and Burke's theorems. The utilization factor for each node
is given by P 0.8 = Pge The simulation was run for 4,840 customers, and the
following statistics were computed: <K, > = 3,36, <K

1
13,4, From the Pollaczeck-Khinchin formula, <K

2) = 2,83, and <K1K2> =

1) = 4 when computed from the
true distribution. For the simulation distribution Cov(Kl,Kz) = 3,9, which is
the largest correlation among the examples,

For each example, the results of the comparisons are given in Tables 1-4.

Due to the generally small probabilities of any given state, both approxi-
mations ql(Kl,Kz) and qZ(Kl,Kz) are "close” to the simulated distribution under
the measures of maximum pointwise difference and the sum of the squage of
pointwise difference. Hence, the relative—-entropy measure (average percentage
of relative difference) is the most revealing. By the relative—entropy measure,

both approximations in examples one and two differ from the simulation by less

than one percent., The addition of the joint constraint results in a 2.4 percent
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Example 1: ¢°(K,,K,)
Simulation Distribution for
M|H,|1 —H, Tandem Network

2 ."‘-.

- . K2
0 1 2 3 4 5

1390 .0861 .0522 .0364 .0216 .0144
0831 .0466 .0316 .0184 .0130 .0096
.0476 .0311 .0163 .0114 .0087 .0055
0340 .0020 .0150 .0087 .0057 .0035
0261 .0132 .0095 .0053 .0041 .0021
0165 .0078 .0047 .0027 .0026 .0014

K1

U WD =~ O

. L q x.(Kl’.Kz) L] . L
Maximum Entropy Distribution Subject to Utilization,
<K;>=177,<K,> = 183.

K,
0 1 2 3 4 5

1410 0799 .0527 .0347 .0229 .0151
0826 .0469 .0309 .0204 .0135 .0088
0545 .0304 .0200 .0132 .0087 .0057
.0346 .0197 .0130 .0085 .0056 .0037
.0224 .0127 .0084 .0055 .0036 .0024
0145 .0083 .0054 .0036 .0024 .0016

K1

U WO O

go(K,K2)
Maximum Entropy Distribution Subject to Utilization,

K,
0 1 2 3 4 5

.13900 .0795 .0527 .0350 .0232 .0154
.0822 .0469 .0310 .0205 .0135 .0090
.0536 .0304 .0020 .0132 .0087 .0057
0349 .0198 .0130 .0085 .0056 .0037
0228 .0128 .0084 .0055 .0036 .0023
.0148 .,0083 .0054 .0035 .0023 .0015

K1

ke W= O



Example 2: ¢’(K,,K,)
Simulation Distribution for
‘. M|H,;|1 — I|1 Tandem Network

- K,
0 1 2 3 4 S

.2020 .0764 .0387 .0249 .0131 .0083
.1020 .0490 .0257 .0209 .0120 .0083
0418 0265 .0225 .0173 .0115 .0086
0199 0197 .01686 .0141 .0085 .0046
0095 .0142 .0164 .0122 .0056 .0047
0031 .0081 .0070 .0038 .0036 .0038

K1

N WNO=O

. 01.(K1,{{2)
Maximum Entropy Distribution Subject to Utilization,

K,
0 1 2 3 4 5

.1410 .0855 .0544 .0346 .0220 .0140
.0855 .0520 .0331 .0210 .0134 .0085
.0054 .0331 .0210 .0134 .0085 .0054
0346 .0210 .0134 .0085 .0054 .0034
.0220 .0134 .0085 .0054 .0034 .0022
0140 .0085 .0054 .0034 .0022 .0014

K1

Ui WO O

72K, K5)
Maximum Entropy Distribution Subject to Utilization,
<K ;> =170,<K,> = 1.70,<K ,Ka> = 4.1

1560 .0925 .0534 .0303 .0178 .0103
0025 .0569 .0342° .0205 .0123 .0074
0534 0342 .0214 .0134 .0084 .0052
.0308 .0205 .0134 .0087 .0057 .0037
0178 0123 .0084 .0057 .0038 .0026
.0103 .0074 .0052 .0037 .0026 .0018

K1

N WO~ O



K1

K1

N W= O

b WO~ O

Example 3: ¢°'(K,K,)
Simulation Distribution for

M|D|1 — 1|1 Tandem Network

.2930
.1530
.0363
.0049
.0008

<K,;> = .765,<K,> = .512,

.2500
1630
.0056
.0196
0067
0023

.1950
1780
.0916
0345
.0101
.0021

K,

(3]

(o JolololoNe

9K Kq) .
Maximum Entropy Distribution Subject to Utilization,,

K,

1 2
2440 0057
1600 0037
.0055 .0013
.0019 0004
.0066 .0002
.0023 .0005

q Z(K I'K ‘.’)

COO0OO0OO0

3

1.34x10™
8.77x10°
3.04x10°
1.05%x10°
3.64x10°°
1.26 %1078

[N

COO0O0OO00

4

3.14%x10°°
2.05%107®
7.12%107
2.47 %107
8.84x 1078
2.96x107®

Maximum Entropy Distribution Subject to Utilization,

b WO = O

2820
.1580
0043
.0118
.0032
.0009

.2150
.1700
0065
0025
.0096
.0037

K,

W

3

2.95%10™
4.94%10°
3.54%10°
2.70%10°°
2.07 %107
1.58 1075

4

3.46x1077
7.96 %1077
8.25%1077
8.98 1077
9.56 X107
9.56 1077

o

OCOO0O0O0O0O

5

7.37%x10°®
481x10°®
1.67x10°%
5.78 %107
8.54 %1078

.6930%10°°

5

4.05%10°°
1.26 %107
1.92x10°8
292%x1073
4.43x1078
6.72x 108



Example 4: ¢’(K,K,)
Simulation Distribution for
- M|Mj1 — 1|1 Tandem Network

e

.0082 .0382 .0253 .0175 .0099 .0077
0527 .0318 .0247 .0167 .0125 .0O83
0290 .0242 .0261 .0186 .0152 .0079
0169 .0189 .0218 .0214 .0152 .0076
0082 0114 .0175 .0217 .0107 .0095
0040 .0072 0116 .0179 .0090 .0080

K1

W~ O

. q ngl,.Kz) [ o e
Maximum Entropy Distribution Subject to Utilization,

K,
0 1 2 3 4 5

.0400 .0451 .0324 .0233 .0167 .0120
0378 .0427 .0306 .0220 .0158 .0113
.0289 .0326 .0234 .0168 .0121 .0090
0221 .0249 .0179 .0128 .0092 .0066
.0169 .0190 .0137 .0098 .0070 .0050
0129 .0145 .0104 .0075 .0053 .0039

K1

Ut WO O

9AKLK) A
Maximum Entropy Distribution Subject to Utilization,
<K,> =3.36,<Ks> = 283, <K K.,> =134

K,

0467 .0526 .0346 .0227 .0149 .0097 ~
0443 .0509 ..0341 .0228 .0153 .0102
0315 .0369 .0251 .0172 .0117 .0080
0224 0267 .0186 .0129 .0090 .00G2
0159 .0193 .0137 .0097 -.0070 .0049
0113 .0140 .0101 .0073 .0052 .0038

K1

N WO



Table 1: Comparison of Approximations for Example 1

-

M|H;|1 —H, Tandem Network

Constraints: <K ;> =177, <K,;> = 183, <K K,> = 3.14

Higi,q') (e (K,Ko) - ¢’ (K1,K3))% | max | ¢i (K1, KCg) - ¢° (K1, UCo) |
¢: | 6.24x107° 1.43x10™ 6.20 107
gs | 1.60x107 1.44x107 6.60x 107
Table 2: Comparison of Approximations for Example 2
M|H,|1 — I|1 Tandem Network
Constraints: <K ;> = 1.77, <K,> = 183, < K> =14
Hlgi,a'] | XlaUC1K ) - ¢' (KK o)), | max|q(K K ) - g (),0G5) |
q; | 1.01x107! 5.76 X107 6.17X 107
ga | 7.38X107" 3.60%x10™ 4.60% 107
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Table 3: Comparison of Approximations for Example 3

L

M|D|1 — I|]1 Tandem Network

Constraints: <K;> = 1.77, <K,> =183, <K K> = 14

H{g.q'] | T(a:(K1.K) - ¢ (K1,Kp)), | max| g (K, /) - q" (K1,Ky)|
q; | 5.81x107¢ 7.05x107 4.94Xx107°
72 | 2.39x107° 1.53x10™° 2.63 X107

Table 4: Comparison of Approximations for Example 4

MM|1 — Ij1 Tandem Network

Constraints: <K ;> = 3.36, <K,> =283, <K ,K,> = 13.14

| ———

Higi,a'] | L(q(K,Ka) - ¢' (K LKo))% | max| q(KKy) - ¢ (K1,KK,) |
q: | 2.33x107! 5.56% 107 5.82% 107
g, | 1.91x107! 5.03x107° 5.15%107?
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increase in accuracy in example 3 and a four percent increase in example 4, the

most correlated among the examples,
VI. DISCUSSION

In this paper, information theoretic analysis was applied to obtain an
explicit maximum entropy distribution for the number of customers in a G|G|l
system to "minimal”™ information. The approach was then extended to multiple
simultaneous G|G|1 systems where the approximation was obtained subject to
independent information resulting in an independent (product form) distribution.
The result is of interest primarily because it sparked a general discussion of
product form approximations where it was determined that dependency of random
variables is captured only by imposing constraints on both the marginal and
joint distributions. Moreover, although not directly applicble, the result
serves to stimulate interest in the use of this inference technique for networks
of queueing systems.

The difficulty in applying maximum entropy analysis to a network of queues
lies in capturing the interconnection of the systems. As a first step, a very
simple network, queues in tandem, was considered. For this network, the inter-
connection of the queues was captured by the equilibrium constraint, which led
to an explicit formula for the number of customers in the tandem system subject
to the mean number of customers in each system. A secondary problem, that of
the form of the approximation, was addressed by adding an additional constraint
on the first joint moment. This result is interesting because it identifies
minimal information for a joint system that addresses the possible dependency of
the random variables.

The maximum entropy approximation could prove useful in applications in

which knowledge of the full probability distribution is necessary., One example
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is queueing network control. By strainghtforward techniques (measurement or
prediction), it is common to know (or have unbiased estimates of) average flows
and average service rates and thereby average queue sizes, Higher order moments
such as variances are needed, however, to apply modern distributed routing
algorithms that utilize estimates of flow derivatives, The more sophisticated
versions of these algorithms require the entire distribution to predict the
optimal control function., It should be noted that the maximum entropy approxi-
mation has been shown to be continuous as a function of the constraints [23].
Thus, if only good estimates of moments are available (for example, through
repeated sampling), the approximation will be close to the approximation subject
to the true (unknown) moments.

The approximation could also be used as an additional tool in conventional
operational analysis [24-26]. 1Indeed, in the present approach, standard perfor-
mance measures are utilized as constraints for the distribution. 1In any case,
if the customer population approximation is close to the true distribution in
some precise sense, then it can provide a more extensive analysis of system
interaction., For example, knowledge of the joint customer distribution readily
provides the distribution for the number of customers in the network as well as
marginal and conditional customer distributions. From the conditional distribu-
tions, conditional moments can be computed and, under appropriate assumptions,
estimates of conditional expected delays and sojourn (response) times become
.available,

Tandem queues were selected to introduce the approach to networks. Because
of the special topological structure, much is known [21-22,27] about such
systems, The focus here is not the particular study of tandem queues but an
initial consideration of the issues involving information theoretic analysis for

queueing networks. It seems clear that the approach applied to the tandem
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network can be extended to more general networks through imposed marginal and
joint constraints along with analogous equilibrium constraints that reflect the
topological structure.

To assess the quality of the two maximum entropy distributions as approxi-
mations to the customer distribution of a tandem network, several different
examples were presented. The particular case of a tw-node network was
considered where customers extracted service according to a variety of distribu-
tions and had either identical or independent and identically distributed
service times in each node. Based on these examples, it appears that minimal
information results in "good” approximations. In particular, for small correla-
tion, it appears that the product form approximation is quite accurate. This
approximafion is appealing as it has closed form solution. When, however, the
random variables are strongly correlated, the joint constraint should become
more important,

A question that arises in comparing probability distributions is what
constitutes a good measure of closeness, For distributions such that the prob-
ability of any particular state is small, for example, if the mass is spread
"uniformly” over a large state space, then the maximum absolute pointwise
difference of the sum or the square of the pointwise difference of the two
distributions is expected to be small, In this case, it appears that the
relative-entropy between the two distributions is the best among the three pro-
posed measures as it relates the two on a "micro” level, Emphasizing this
measure for the tandem examples, it is reasonable to say that the approxima-
tions, in particular those obtained with the joint constraint, are all close.
Of course, far more analytical and numerical work is needed to say anything
precise about the approximations, but as an inference technique for single

system queues and possibly networks of queues, the results are promising.
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APPENDIX

Proof of Proposition 2,

For notational simplicity, let
K: = (KI’KZ’...’KN) .

By system independence [17], if the initial value distribution is of the product
form, the relative-entropy approximation to q (K) subject only to constraints on
the marginal distribution, 1i.e.,

2’...,1‘

Y £.(K)q(K) = § £.(K.)q(K) = <f (K,)> i =1,
K 3 kK 412 3 3= 1,2,000,M

is of the product form,
N
q(X) = I q(Ki) . (29)
i=]1

Now, (29) also satisfies the constrained problem of the relative-—entropy

distribution subject to

% fj(Ki)q(K) = <fj(Ki)> = 1,2,000,M (30)
and
N
)) £,(K)q(K) = <£ (K)> = T <f£1(Ki)> L =M+ 1M+ 2,...,N (31)

K i=]

where <fzi(Ki)> is an element of the set of marginal constraints given by (30).

The relative-entropy solution subject to (30)-(31) and normalization is given by

M N
i=] L =M+1

However, by uniqueness of the relative-entropy solution, g, = 0, M+ 1< 2 < N

L
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and the product form solution follows.

Conversely, if the relative-entropy approximation is of the product form,
and every joint constraint is a joint moment satisfied by the approximatioﬁ,
then it follows that

E £(K)q(K) = <£(K)> = é xi x% coe K:q(K)

3 - vl k
- g Klq(K,) ZK KaRy) .o § Ka®) = ab> ad> Lo,

1 2 KN

Hence, each joint constraint is equal to the product of marginal constraints

satisfied by the marginal relative entropy distributions, Q.E.D.
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